阿里云文档 2024-07-17

使用TensorRT-LLM优化大语言模型在GPU上的推理性能

在处理大语言模型任务时,您可以选择在GPU云服务器环境下安装推理引擎TensorRT-LLM,然后通过使用TensorRT-LLM工具实现大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型等)在GPU上的高性能推理优化功能。

阿里云文档 2024-05-13

使用AI通信加速库DeepNCCL加速模型的分布式训练或推理性能

DeepNCCL是阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL进行通信算子调用的分布式训练或多卡推理等任务。开发人员可以根据实际业务情况,在不同的GPU云服务器上安装DeepNCCL通信库,以加速分布式训练或推理性能。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用DeepNCCL的操作方法。

云原生AI套件:一键训练大模型及部署GPU共享推理服务

1 课时 |
57 人已学 |
免费
开发者课程背景图
阿里云文档 2024-05-09

AI通信加速库DeepNCCL的架构、性能以及优化原理

DeepNCCL是为阿里云神龙异构产品开发的一种用于多GPU互联的AI通信加速库,在AI分布式训练或多卡推理任务中用于提升通信效率。本文主要介绍DeepNCCL的架构、优化原理和性能说明。

阿里云文档 2024-04-15

AIACC-ACSpeed的性能数据展示

相比较通过原生DDP训练模型后的性能数据,使用AIACC-ACSpeed训练多个模型时,性能具有明显提升。本文为您展示了AIACC-ACSpeed的部分典型模型的训练性能数据。

阿里云文档 2023-10-27

展示AIACC-AGSpeed性能数据和性能效果

本文展示了AIACC-AGSpeed(简称AGSpeed)的部分性能数据,相比较通过PyTorch原生Eager模式训练模型后的性能数据,使用AGSpeed训练多个模型时,性能具有明显提升。

文章 2022-02-17 来自:开发者社区

阿里云超算集谛优化GPU异构并行性能:GROMACS

作者:慕笛“集谛”是一款内置于阿里云弹性高性能计算(Elastic High Performance Computing,E-HPC)的云上性能监控与分析引擎,支持集群资源利用情况的实时监控和用户作业运行情况的在线分析。对于采用GPU加速的异构计算应用场景,“集谛”除了监控节点host端资源外还能监控GPU device端的资源利用情况,给出GPU利用率、显存利用率和PCI-E数据传输带宽等性能....

文章 2022-02-16 来自:开发者社区

【重磅】Jeff Dean等提出自动化分层模型,优化CPU、GPU等异构环境,性能提升超 60%

谷歌大脑Jeff Dean等人最新提出一种分层模型,用于将计算图有效地放置到硬件设备上,尤其是在混合了CPU、GPU和其他计算设备的异构环境中。 设备配置(Device placement)可以被框定为学习如何在可用设备之间对图进行分区,将传统的图分区方法作为一个自然的baseline。先前的工作有Scotch 提出的一个用于图分区的开源库,其中包括k-way Fiduccia-Mattheys....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

云服务器ECS

做技术先进、性能优异、稳如磐石的弹性计算!

+关注