文章 2024-06-22 来自:开发者社区

机器学习归一化特征编码(一)

特征缩放 因为对于大多数的机器学习算法和优化算法来说,将特征值缩放到相同区间可以使得获取性能更好的模型。就梯度下降算法而言,例如有两个不同的特征,第一个特征的取值范围为1——10,第二个特征的取值范围为1——10000。在梯度下降算法中,代价函数为最小平方误差函数,所以在使用梯度下降算法的时候,算法会明显的偏向于第二个特征,因为它的取值范围更大。在比如,k近邻算法,它使用的是欧...

机器学习归一化特征编码(一)
文章 2024-06-22 来自:开发者社区

机器学习归一化特征编码(二)

机器学习归一化特征编码(一)+https://developer.aliyun.com/article/1544815?spm=a2c6h.13148508.setting.19.22454f0e4mZEBN OneHotEncoder️ 当然,除了自然顺序编码外,常见的对离散变量的编码方式还有独热编码,独热编码的过程如下 不难发现...

机器学习归一化特征编码(二)

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
198 人已学 |
免费

PAI平台学习路线:机器学习入门到应用

52 课时 |
2446 人已学 |
免费

场景实践 - 机器学习PAI实现精细化营销

7 课时 |
199 人已学 |
免费
开发者课程背景图
文章 2024-06-17 来自:开发者社区

【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化

随着科技的飞速发展,人工智能(AI)已经成为当今世界的热门话题。作为AI的核心技术之一,机器学习(Machine Learning, ML)在各个领域都发挥着举足轻重的作用。特别是在深度学习(Deep Learning, DL)领域中,机器学习提供了重要的理论支撑和实践指导。本文将通俗易懂地介绍机器学习的基本概念、原理和应用场景,并深入解析机器学习在深度学习领域中的重要作用。 ...

【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
文章 2024-05-27 来自:开发者社区

机器学习:归一化

归一化的目的 首先,我们假设 按照常理来说,我们可以想象θ1x1与θ2x2对y的贡献应该是一样大的,即θ1x1=θ2x2,但如果下x1<<x2的情况出现,那么θ'1>>θ'2。 在梯度...

机器学习:归一化
文章 2024-04-30 来自:开发者社区

【Python机器学习专栏】数据标准化与归一化技术

在机器学习领域,数据预处理是一个至关重要的步骤。其中,数据标准化(Normalization)和归一化(Standardization)是两种常用的数据预处理技术。它们的目的是调整数据到一个特定的范围,以便算法能够更有效地学习。本文将详细介绍这两种技术的原理、应用场景以及如何在Python中实现它们...

问答 2024-03-26 来自:开发者社区

机器学习PAI分数归一化的作用是什么啊?

机器学习PAI分数归一化的作用是什么啊?

问答 2024-03-26 来自:开发者社区

想请教下机器学习PAI swing-1.0.jar 分数用归一化分数还是原始分呢?

想请教下机器学习PAI swing-1.0.jar 分数用归一化分数还是原始分呢?我用归一化分数离线效果不太好~可调参数已经一样了,这个推荐用归一化分数还是原始分数啊?

阿里云文档 2024-03-08

归一化批预测

使用归一化训练的模型,对数据进行归一化批预测。

阿里云文档 2024-03-08

归一化训练组件如何使用

在数据预处理中,为了降低不同列的数据量级和范围大小带来的影响,需要将各列数据进行归一化操作。归一化之后,不同列的数据都会被限定到同一个数据范围内。

文章 2024-01-31 来自:开发者社区

【机器学习】归一化目的分析

  不同方向的陡峭度是不一样的,即不同维度的数值大小是不同。也就是说梯度下降的快慢是不同的:  如果维度多了,就是超平面(了解一下霍金所说的宇宙十一维空间),很难画出来了。   如果拿多元线性回归举例的话,因为多元线性回归的损失函数 MSE 是凸函数,所以我们可以把损失函数看成是一个碗。然后下面的图就是从碗上方去俯瞰!哪里是损失最小的地方呢?当然对应的就是碗底的地方!所以下图碗中心的地方...

【机器学习】归一化目的分析

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

阿里云机器学习平台PAI

阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。

+关注