文章 2023-12-19 来自:开发者社区

【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、问答智能客服简介QA问答是Question-and-Answer的缩写,根据用户提出的问题检索答案,并用用户可以理解的自然语言回答用户,问答型客服注重一问一答处理,侧重知识的推理。从应用领域视角,可将问答系统分为限定域问答系统和开放域问答系统。根据支持问答系统产生答案的文档库、知识库,以及实现的技术分类,可分为自然语言的数据库问答系统、对话....

【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】使用SVM、随机森林法、梯度法等多种方法对病人罹患癌症预测实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、数据集背景乳腺癌数据集是由加州大学欧文分校维护的 UCI 机器学习存储库。数据集包含 569 个恶性和良性肿瘤细胞样本。样本类别分布:良性357,恶性212数据集中的前两列分别存储样本的唯一 ID 编号和相应的诊断(M=恶性,B=良性)。第 3-32 列包含 30 个实值特征,这些特征是根据细胞核的数字化图像计算得出的,可用于构建模型来预测....

【Python自然语言处理】使用SVM、随机森林法、梯度法等多种方法对病人罹患癌症预测实战(超详细 附源码)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】使用逻辑回归(logistic)对电影评论情感分析实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、舆情分析舆情分析很多情况下涉及到用户的情感分析,或者亦称为观点挖掘,是指用自然语言处理技术、文本挖掘以及计算机语言学等方法来正确识别和提取文本素材中的主观信息,通过对带有情感因素主观性文本进行分析,以确定该文本的情感倾向。文本情感分析的途径: 关键词识别 词汇关联 统计方法 概念级技术目前主流的情感分析方法主要有两种:基于情感词典的分析法和....

【Python自然语言处理】使用逻辑回归(logistic)对电影评论情感分析实战(超详细 附源码)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】文本向量化处理用户对不同类型服装评论问题(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~下面以文本向量化为目标,举例说明基于不同模型的实现过程,使用的数据集的主题是用户对不同类型的女性服装的评论,总共有23485条记录 实现步骤如下一、导入库文件首先导入需要的库文件,本实例设计词频-逆文档模型,N元模型以及词袋模型,并利用混淆矩阵直观描述各模型的预测能力 代码如下import gensim import nltk from skl....

【Python自然语言处理】文本向量化处理用户对不同类型服装评论问题(超详细 附源码)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】隐马尔可夫模型中维特比(Viterbi)算法解决商务选择问题实战(附源码 超详细必看)

需要源码请点赞关注收藏后评论区留言私信~~~一、统计分词统计分词基本逻辑是把每个词语看做由单字组成,利用统计学原理计算连接字在不同文本中出现的次数,以此判断相连字属于特定词语的概率。二、隐马尔可夫模型当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态,那么此随机过程通常称之为马尔可夫过程。隐马尔可夫模型(Hidden Markov Model:HMM)是含....

【Python自然语言处理】隐马尔可夫模型中维特比(Viterbi)算法解决商务选择问题实战(附源码 超详细必看)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】规则分词中正向、反向、双向最大匹配法的讲解及实战(超详细 附源码)

需要源码和字典集请点赞关注收藏后评论区留言私信~~~一、规则分词规则分词核心内容是建立人工专家词典库,通过将语句切分出的单词串与专家词典库中的所有词语进行逐一匹配,匹配成功则进行对象词语切分,否则通过增加或者减少一个字继续比较,直到剩下一个单字终止匹配操作。按照匹配算法和查找方向,可以分为正向最大匹配法、逆向最大匹配法与双向匹配法三种方法。二、正向最大匹配法正向最大匹配(Maximum Matc....

【Python自然语言处理】规则分词中正向、反向、双向最大匹配法的讲解及实战(超详细 附源码)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】正则表达式(RE)的讲解及实战应用(图文解释 附源码)

觉得有帮助请动动小手点赞关注收藏~~~一、分词在自然语言处理中,分词是文本挖掘和文本分析的基础,分词是将给定语言的字符序列按照规则组合排序成词语序列的处理过程,根据语言不同,分词可以分为中文分词和外文分词,在英语中,单词与单词之间直接以空格作为分隔符,因此空格可以作为分词的关键信息,与此形成对比,中文相对复杂,词语之间缺乏统一的既定分隔符,这决定了即使是相同的中文文本,根据语境不同或者算法不同可....

【Python自然语言处理】正则表达式(RE)的讲解及实战应用(图文解释 附源码)
文章 2023-12-19 来自:开发者社区

【Python自然语言处理】计算文本相似度实例(使用difflib,fuzz,余弦三种计算方式 附源码)

需要全部代码请点赞关注收藏后评论区留言私信~~~下面列举通过余弦相似度公式和标准库分别计算不同文本信息相似度的实例,首先需要对中文进行分词,通过jieba导入分词库文件,使用Python标准库计算相似度,导入两种不同的相似度计算库difflib和fuzz,除此之外,还自定义了基于余弦相似度公式的相似度计算方法接着定义余弦相似度计算函数,函数参数部分传入需要比较的两个文本信息,先对文本进行向量化处....

【Python自然语言处理】计算文本相似度实例(使用difflib,fuzz,余弦三种计算方式 附源码)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像