使用ACS GPU算力构建LLM推理服务
容器计算服务 ACS(Container Compute Service)提供了高效、灵活的容器管理和编排能力,为大规模模型的部署与推理提供了强有力的支持。本文介绍如何在ACS上高效利用大模型推理镜像,实现模型服务的快速部署与规模化应用。
使用DeepGPU-LLM镜像构建模型的推理环境
在GPU实例上配置DeepGPU-LLM容器镜像后,可以帮助您快速构建大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)的推理环境,主要应用在智能对话系统、文本分析、编程辅助等自然语言处理业务场景,您无需深入了解底层的硬件优化细节,镜像拉取完成后,无需额外配置即可开箱即用。本文为您介绍如何在GPU实例上使用DeepGPU-LLM容器镜像构建大语言模...
使用ASM回退功能构建高可用的LLM服务
在LLM场景中,业务应用需要对接内部或外部的基础模型服务。服务网格 ASM(Service Mesh)支持同时对接多个基础模型服务,并且可以实现当一个模型服务不可用时,自动回退到另一个模型服务,助力企业实现LLM应用的高可用。本文介绍如何在对接LLM服务时使用流量回退功能。
通过Milvus和LangChain快速构建LLM问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
如何通过云上数据库一站式构建RAG系统
随着AIGC技术日新月异的发展,LLM应用也在持续迭代,检索增强生成(RAG)系统已经成为企业知识库、智能客服、电商导购等场景的核心环节。阿里云OpenSearch-LLM智能问答版联合数据集成Data Integration产品,帮助企业和开发者实现分钟级构建专属RAG系统。本教程介绍如何通过云上数据库一站式构建RAG系统。
OpenIM Bot: 用LLM构建企业专属的智能客服
背景 随着OpenIM的发展,技术和产品的咨询支持对国内、外的用户变得越来越重要。用户数量的迅速增加,使得OpenIM团队的支持人员面临巨大压力,因为支持人员的数量并没有同步增长。因此,找到一种高效的方法来服务用户成为团队当前迫切需要解决的问题。 通过分析几十个微信群、Slack社区以及Gmail邮箱中收集到的用户问题,发现接近一半的问题其实可以在OpenIM官网的文档中找到答案。然而,由于...
LLM系列 | 16: 构建端到端智能客服
简介 漠漠水田飞白鹭,阴阴夏木啭黄鹂。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖海蛎煎的小男孩。紧接前面几篇ChatGPT Prompt工程和应用系列文章: 04:ChatGPT Prompt编写指南 05:如何优化ChatGPT Prompt? 06:ChatGPT Prompt实践:文本摘要&推断&转换 07:ChatGPT Prompt实践:...
LLM系列 | 11: 基于ChatGPT构建智能客服系统(query分类&安全检查&防注入)
简介 竹斋眠听雨,梦里长青苔。门寂山相对,身闲鸟不猜。小伙伴们好,我是微信公众号:《小窗幽记机器学习》的小编卖热干面的小女孩。紧接前面几篇ChatGPT Prompt工程系列文章: 04:ChatGPT Prompt编写指南05:如何优化ChatGPT Prompt?06:ChatGPT Prompt实践...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。