【吴恩达机器学习笔记】七、神经网络
七、神经网络1. 非线性假设在前面讨论逻辑回归问题时,我们提到了分类问题,而且可以通过对特征进行多项式展开,让逻辑回归支持非线性的分类问题,但是当特征量非常非常大时,这对计算机性能是一个很大的考验。举个例子,我们想要区分一幅图像是否是汽车图像,假定图像分辨率为50×50,且每个像素的灰...
吴恩达《机器学习》课程总结(9)神经网络的学习
9.1代价函数 (1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。 则代价函数为(同样不对θ0正则化): 9.2反向传播算法 前向传播算法: 用δ表示误差,则δ(4)=a(4)-y 前一层的误差为: 再前一层的误差为: 。 输入层不存在误差。 每一层有了误差之后,即可分别进行求偏导...
吴恩达《机器学习》课程总结(8)神经网络表述
$stringUtil.substring( $!{XssContent1.description},200)...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
+关注