什么是PS-SMART二分类训练算法组件
参数服务器PS(Parameter Server)致力于解决大规模的离线及在线训练任务,SMART(Scalable Multiple Additive Regression Tree)是GBDT(Gradient Boosting Decision Tree)基于PS实现的迭代算法。PS-SMART支持百亿样本及几十万特征的训练任务,可以在上千节点中运行。同时,PS-SMART支持多种数据格式及...
什么是GBDT二分类预测V2算法组件
GBDT二分类预测V2组件提供了针对GBDT二分类V2组件的预测功能,使用梯度提升决策树 (Gradient Boosting Decision Trees) 算法,对数据进行二分类问题的预测。本文介绍GBDT二分类预测V2组件的配置方法。
什么是视频分类训练算法组件_人工智能平台 PAI(PAI)
针对原始视频数据,您可以使用视频分类训练算法组件对其进行模型训练,从而获得用于推理的视频分类模型。本文介绍视频分类训练算法组件的配置方法及使用示例。
SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)
需要源码请点赞关注收藏后评论区留言私信~~~一、支持向量机SVM算法原理支持向量机(Support Vetor Machine,SVM)是一种对线性和非线性数据进行分类的方法。SVM 使用一种非线性映射,把原始训练数据映射到较高的维上,在新的维上,搜索最佳分离超平面SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM、线性不可分的....
分类算法中决策树和KNN算法讲解及对iris数据集分类实战(附源码)
需要源码请带点赞关注收藏后评论区留言私信~~~分类是一种重要的数据分析形式,它提取刻画重要数据类的模型。数据分类也被称为监督学习,包括学习阶段(构建分类模型)和分类阶段(使用模型预测给定数据的类标号)两个阶段。数据分类方法只要有决策树归纳、贝叶斯分类、K-近邻分类、支持向量机SVM等方法一、决策树规约1. 算法原理决策树方法在分类、预测、规则提取等领域有广泛应用。在20世纪70年代后期和80年代....
【数据挖掘】KNN算法详解及对iris数据集分类实战(超详细 附源码)
需要源码请点赞关注收藏后评论区留言私信~~~K近邻(k-Nearest Neighbor Classification,KNN)算法是机器学习算法中最基础、最简单的算法之一,属于惰性学习法.惰性学习法和其他学习方法的不同之处在于它并不急于获得测试对象之前构造的分类模型,当接收一个训练集时,惰性学习法只是简单的存储或者稍微处理每个训练样本,直到测试对象出现才开始构造分类器,惰性学习法的一个重要优点....
ML之kNN:利用kNN算法对莺尾(Iris)数据集进行多分类预测
输出结果输出数据说明: Iris Plants Database====================Notes-----Data Set Characteristics: :Number of Instances: 150 (50 in each of three classes) :Number of Attributes: 4 nume....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。