【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类
注意力机制的特点是,它的输入向量长度可变,通过将注意力集中在最相关的部分来做出决定。注意力机制结合RNN或者CNN的方法。1 实战描述【主要目的:将注意力机制用在图神经网络中,完成图注意力神经网络的结构和搭建】1.1 实现目的有一个记录论文信息的数据集,数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,使模型学习已有论文的分类....

【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类
1 案例说明(图卷积神经网络)CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。1.1 使用图卷积神经网络的特点使用图神经网络来实现分类。与深度学习模型的不同之处在于,图神经网通会利用途文本身特征和论文间的关系特征进行处理,仅需要少量样本即可达到很好的效果。cora....

【Pytorch神经网络实战案例】19 神经网络实现估计互信息的功能
1 案例说明(实现MINE正方法的功能)定义两组具有不同分布的模拟数据,使用神经网络的MINE的方法计算两个数据分布之间的互信息2 代码编写2.1 代码实战:准备样本数据import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from tqdm import tqdm import....

【Pytorch神经网络实战案例】14 构建条件变分自编码神经网络模型生成可控Fashon-MNST模拟数据
1 条件变分自编码神经网络生成模拟数据案例说明在实际应用中,条件变分自编码神经网络的应用会更为广泛一些,因为它使得模型输出的模拟数据可控,即可以指定模型输出鞋子或者上衣。1.1 案例描述在变分自编码神经网络模型的技术上构建条件变分自编码神经网络模型,实现向模型输入标签,并使其生成与标签类别对应的模拟数据的功能。1.2 条件变分自编码神经网络的实现条件变分自编码神经网络在变分自编码神经网络基础之上....

【Pytorch神经网络实战案例】13 构建变分自编码神经网络模型生成Fashon-MNST模拟数据
1 变分自编码神经网络生成模拟数据案例说明变分自编码里面真正的公式只有一个KL散度。1.1 变分自编码神经网络模型介绍主要由以下三个部分构成:1.1.1 编码器由两层全连接神经网络组成,第一层有784个维度的输入和256个维度的输出;第二层并列连接了两个全连接神经网络,每个网络都有两个维度的输出,输出的结果分别代表数据分布的均值与方差。1.1.2 采样器根据编码器得到的均值与方差计算出数据分布情....

【Pytorch神经网络实战案例】12 利用注意力机制的神经网络实现对FashionMNIST数据集图片的分类
1、掩码模式:是相对于变长的循环序列而言的,如果输入的样本序列长度不同,那么会先对其进行对齐处理(对短序列补0,对长序列截断),再输入模型。这样,模型中的部分样本中就会有大量的零值。为了提升运算性能,需要以掩码的方式将不需要的零值去掉,并保留非零值进行计算,这就是掩码的作用2、均值模式:正常模式对每个维度的所有序列计算注意力分数,而均值模式对每个维度注意力分数计算平均值。均值模式会平滑处理同一序....

【Pytorch神经网络实战案例】11 循环神经网络结构训练语言模型并进行简单预测
1 语言模型步骤简单概述:根据输入内容,继续输出后面的句子。1.1 根据需求拆分任务(1)先对模型输入一段文字,令模型输出之后的一个文字。(2)将模型预测出来的文字当成输入,再放到模型里,使模型预测出下一个文字,这样循环下去,以使RNN完成一句话的输出。1.2 根据任务设计功能模块(1)模型能够记住前面文字的语义;(2)能够根据前面的语义和一个输入文字,输出下一个文字。1.3 根据功能模块设计实....

【Pytorch神经网络实战案例】10 搭建深度卷积神经网络
识别黑白图中的服装图案(Fashion-MNIST)https://blog.csdn.net/qq_39237205/article/details/123379997基于上述代码修改模型的组成1 修改myConNet模型1.1.1 修改阐述将模型中的两个全连接层,变为全局平均池化层。1.1.2 修改结果### 1.5 定义模型类 class myConNet(torch.nn.M....

图神经网络17-DGL实战:构建图神经网络(GNN)模块
1 DGL NN模块的构造函数构造函数完成以下几个任务:设置选项。注册可学习的参数或者子模块。初始化参数。import torch.nn as nn from dgl.utils import expand_as_pair class SAGEConv(nn.Module): def __init__(self, in_f...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
网络更多实战相关
域名解析DNS
关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。
+关注