阿里云文档 2025-11-04

在DataWorks使用Python3代码编写MaxCompute任务,并周期性调度运行。

DataWorks为您提供PyODPS 3节点,您可以在该节点中直接使用Python代码编写MaxCompute作业,并进行作业的周期性调度。本文为您介绍如何通过DataWorks实现Python任务的配置与调度。

阿里云文档 2025-09-30

使用Python请求处理程序响应事件并执行相关业务代码

您可以使用Python请求处理程序响应接收到的事件并执行相应的业务逻辑。本文介绍Python请求处理程序的相关概念、结构特点和示例。

文章 2025-08-21 来自:开发者社区

【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)

欢迎来到本博客❤️❤️ 博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭:行百里者,半于九十。 1 概述 编辑 随着风力发电的大...

【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
阿里云文档 2025-07-07

如何使用Python3.6及以上版本投递SMTP邮件

本文为SMTP邮件投递代码调用示例,适用于Python3.6及以上。

阿里云文档 2024-11-18

PAI Python SDK代码示例

PAI Python SDK提供了丰富的代码示例Notebook,开发者可以通过这些Notebook快速学习如何通过PAI Python SDK在PAI完成模型的开发和部署。

阿里云文档 2023-10-09

如何使用Python来访问表格问答服务

本文介绍如何使用Python来访问表格问答服务。

文章 2023-08-07 来自:开发者社区

【ARIMA-SSA-LSTM】合差分自回归移动平均方法-麻雀优化-长短期记忆神经网络研究(Python代码实现)

1 概述1.1 ARIMA模型差分自回归移动平均模型( ARIMA)元一PE用于各领域的预测模型 17-19],主要包含自回归模型和移动平均模型2个部分。自回归模型的阶数为p,信号差分的阶数为d ,移动平均模型的阶数为q,因此模型通常表示成ARIMA( p,d ,q) ,具体的数学表达式为:( 1)对所研究的时间序列数据进行平稳性验证,如果不满足要求,则对其进行d阶差分转换成平稳时间序列。(2)....

【ARIMA-SSA-LSTM】合差分自回归移动平均方法-麻雀优化-长短期记忆神经网络研究(Python代码实现)
文章 2023-08-07 来自:开发者社区

【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)

1 概述文献来源:摘要:对任意来流条件下的风电场发电功率进行准确预测,是提高电网对风电接纳能力的有效措施。针对大型风电场的功率预测采用单点位风速外推预测代表性差的局限,提出基于高斯混合模型(GMM)聚类的风电场短期功率预测方法。方法结合数据分布特征,利用GMM聚类将大型风电场划分为若干机组群,借助贝叶斯信息准则指标评价,获得风电场内最优机组分组方案。实际算例验证表明,按照小时级、月度级、年度级等....

【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
文章 2023-08-07 来自:开发者社区

【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)

1 概述1.1 ARIMA模型差分自回归移动平均模型( ARIMA)元一PE用于各领域的预测模型 17-19],主要包含自回归模型和移动平均模型2个部分。自回归模型的阶数为p,信号差分的阶数为d ,移动平均模型的阶数为q,因此模型通常表示成ARIMA( p,d ,q) ,具体的数学表达式为:( 1)对所研究的时间序列数据进行平稳性验证,如果不满足要求,则对其进行d阶差分转换成平稳时间序列。(2)....

【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)
文章 2023-07-30 来自:开发者社区

基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)

1 概述电力负荷预测实质是时间序列预测问题,存在非平稳性和影响因素的复杂性。为了提高预测精度,解决长短期记忆神经网络(LSTM)参数选取随机性大、选取困难的问题,本文提出了一种利用麻雀搜索算法(SSA)优化长短期记忆神经网络参数的短期电力负荷预测模型(SSA-LSTM),通过历史用电负荷数据、相关影响因素数据对待预测日进行负荷预测。本文建立SSA-LSTM模型,进行冷、热、电负荷预测。先对时间序....

基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像