文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构

一、本文介绍 本文记录的是基于GhostNet v1的RT-DETR网络模型轻量化方法研究。GhostNet中的Ghost模块和Ghost瓶颈结构是其轻量化的关键。Ghost模块克服了传统卷积层计算资源需求大的问题,Ghost瓶颈则合理设计了通道数量的变化以及与捷径连接的方式,能更好地在减少计算成本的同时保持较高性能,从而提升模型在移动设备上的应用能力和效率。 模型 参数...

RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构

一、本文介绍 本文记录的是基于GhostNet v1的YOLOv11网络模型轻量化方法研究。GhostNet中的Ghost模块和Ghost瓶颈结构是其轻量化的关键。Ghost模块克服了传统卷积层计算资源需求大的问题,Ghost瓶颈则合理设计了通道数量的变化以及与捷径连接的方式,能更好地在减少计算成本的同时保持较高性能,从而提升模型在移动设备上的应用能力和效率。 模型 参数...

YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别

在Pytorch中可以通过Sequential类构造模型也可以用Module类构造模型。本文主要介绍基于Module类的模型构造方法:它让模型构造更加灵活方便。 1 继承Module类来构造模型 Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造一个多层感知机,输入784,输出10。这里定义的M...

文章 2023-05-10 来自:开发者社区

【Pytorch神经网络理论篇】 05 Module类的使用方法+参数Parameters类+定义训练模型的步骤与方法

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 05 Module类的使用方法+参数Parameters类+定义训练模型的步骤与方法

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注