YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
一、本文介绍 本文给大家带来的改进机制是MobileNetV2,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2在性能上和精度上都要比V1版本强很多,其在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定...
YOLOv5改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
一、本文介绍 本文给大家带来的改进机制是MobileNetV1,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。这些模型基于简化的架构,并利用深度可分离卷积构建轻量级深度神经网络,其引入了两个简单的全局超参数,用于在延迟和准确性之间进行有效的权衡。实验表明,MobileNets在资源和准确性的权衡方面表现出色,并在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中展现了...
YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
一、本文介绍 本文给大家带来的改进机制是EfficientViT(高效的视觉变换网络),EfficientViT的核心是一种轻量级的多尺度线性注意力模块,能够在只使用硬件高效操作的情况下实现全局感受野和多尺度学习。本文带来是2023年的最新版本的EfficientViT网络结构,论文题目是'EfficientViT: Multi-Scale Linear Attention for Hi...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。