文章 2023-08-07 来自:开发者社区

【使用深度学习的城市声音分类】使用从提取音频特征(频谱图)中提取的深度学习进行声音分类研究(Matlab代码实现)

1 概述使用深度学习进行城市声音分类是一种常见的研究方向。下面是一个基本的步骤,通过从音频特征(频谱图)中提取特征,应用深度学习进行声音分类:1. 数据收集和准备:收集包含城市环境下不同声音的音频数据集。可以通过麦克风或其他录音设备在不同城市环境中进行采集,确保数据集中包含各种声音类别,如车辆噪音、人声、自然声等。将音频数据进行预处理,如剪辑、采样率调整、去噪等。2. 音频特征提取:使用音频处理....

【使用深度学习的城市声音分类】使用从提取音频特征(频谱图)中提取的深度学习进行声音分类研究(Matlab代码实现)
文章 2023-07-12 来自:开发者社区

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)

欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1 概述2 运行结果3 参考文献4 Matlab代码实现1 概述近年来,随着可再生能源的并网以及非线性负载和固态开关器件的数量不断增加,导致了大量严重的电能质量问题。同时,精密电子设备的广泛使用需要极高质量的电源。为合理有效地改善电能质量,电能质量扰动问题的准确分类....

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

DataWorks

DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

+关注