文章 2024-11-07 来自:开发者社区

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

介绍 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符.....

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
文章 2024-07-27 来自:开发者社区

【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制

YOLOv8目标检测创新改进与实战案例专栏 专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLOv8基础解析+创新改进+实战案例 介绍 摘要 我们提出了卷积块注意力模块(Convolutional Block Attention Module,CBAM),这是一种简单但有...

【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
文章 2024-06-30 来自:开发者社区

【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D...

【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
文章 2023-08-02 来自:开发者社区

【LSTM分类】基于注意力机制的卷积神经网络结合长短记忆神经网络CNN-LSTM-attention实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab仿真内容点击智能优化算法       神经网络预测       雷达通信      无线传感器       &...

【LSTM分类】基于注意力机制的卷积神经网络结合长短记忆神经网络CNN-LSTM-attention实现数据分类附matlab代码
文章 2023-05-10 来自:开发者社区

【Pytorch神经网络实战案例】12 利用注意力机制的神经网络实现对FashionMNIST数据集图片的分类

1、掩码模式:是相对于变长的循环序列而言的,如果输入的样本序列长度不同,那么会先对其进行对齐处理(对短序列补0,对长序列截断),再输入模型。这样,模型中的部分样本中就会有大量的零值。为了提升运算性能,需要以掩码的方式将不需要的零值去掉,并保留非零值进行计算,这就是掩码的作用2、均值模式:正常模式对每个维度的所有序列计算注意力分数,而均值模式对每个维度注意力分数计算平均值。均值模式会平滑处理同一序....

【Pytorch神经网络实战案例】12 利用注意力机制的神经网络实现对FashionMNIST数据集图片的分类
文章 2022-02-17 来自:开发者社区

Nat.Commun.|使用基于注意力机制的多标签神经网络预测并解释12种RNA修饰

今天介绍来自西交利物浦大学和福建医科大学的Zitao Song, Daiyun Huang等人六月份发表在Nature Communication的文章“Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA mo....

Nat.Commun.|使用基于注意力机制的多标签神经网络预测并解释12种RNA修饰
文章 2022-02-17 来自:开发者社区

美图云联合中科院,提出基于交互感知注意力机制神经网络的行为分类技术 | ECCV 2018

美图云视觉技术部门 +10 AI影响因子 论文 名称:ECCV 时间:2018 企业:美图 雷锋网(公众号:雷锋网) AI 科技评论按:本文为美图云视觉技术部门的 ECCV 2018 录用论文解读。 以往注意机制模型通过加权所有局部特征计算和提取关键特征,忽略了各局部特征间的强相关性,特征间存在较强的信息冗余。为解决此问题,来自美图云视觉技术部门和中科院自...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。