文章 2024-07-17 来自:开发者社区

Pytorch的编译新特性TorchDynamo的工作原理和使用示例

在深度学习中,优化模型性能至关重要,特别是对于需要快速执行和实时推断的应用。而PyTorch在平衡动态图执行与高性能方面常常面临挑战。传统的PyTorch优化技术在处理动态计算图时效果有限,导致训练时间延长和模型性能不佳。TorchDynamo是一种为PyTorch设计的即时(JIT)编译器,通过在运行时拦截Python代码、优化它,并编译成高效的机器代码来解决这一问题。本文通过使用合成数据集展....

Pytorch的编译新特性TorchDynamo的工作原理和使用示例
问答 2023-06-09 来自:开发者社区

机器学习PAI使用pytorch2.0的话,编译或使用有啥注意事项说明么?

机器学习PAI使用pytorch2.0的话,编译或使用有啥注意事项说明么?

文章 2023-05-30 来自:开发者社区

详解PyTorch编译并调用自定义CUDA算子的三种方式

在上一篇教程中,我们实现了一个自定义的CUDA算子add2,用来实现两个Tensor的相加。然后用PyTorch调用这个算子,分析对比了一下和PyTorch原生加法的速度差异,并且详细解释了线程同步给统计时间带来的影响。「上一篇教程:」https://godweiyang.com/2021/03/18/torch-cpp-cuda本篇教程我们主要讲解如何「编译并调用」之前我们写好的CUDA算子,....

阿里云文档 2022-03-14

如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化

AICompiler是集成在PAI-Blade中的AI编译优化组件,包含Static Shape和Dynamic Shape编译框架。通常您无需提供额外配置,AICompiler即可在通用透明的情况下帮助您提高推理性能。本文介绍如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化。

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像