涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(二)
4 实验4.1 MS COCO 2017实验结果i-FPN的表现远远优于原始FPN。i-FPN提高了平均AP +3.4(RetinaNet)、+3.2(Faster RCNN)、+3.5(FCOS)、+4.2(ATSS)、+3.2(AutoAssign)。下图为在COCO2017-val数据集的几个示例图像,显示了使用FPN和i-FPN获得的...
涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)
1 简介我们都知道一个典型的基于卷积神经网络的目标检测器主要由3个部分组成:Backbone、Neck和Head;主干部分(如VGG、ResNet或EfficientNet等)主要是从输入图像中提取基本特征,这些Backbone模型通常都会事先在ImageNet上进行预训练。Neck主要是用来产生High-Level的语义特征。检测Head则是将Neck产生的High...
目标检测:特征金字塔网络(Feature Pyramid Network)
$stringUtil.substring( $!{XssContent1.description},200)...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
+关注