文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合

一、本文介绍 本文记录的是基于BiFPN结构的RT-DETR颈部网络改进方法研究。在RT-DETR的Neck颈部网络中使用的FPN+PAN的结构,但是FPN在融合不同输入特征时简单地将它们相加,没有区分不同特征的重要性;PAN虽然增加了额外的自底向上路径聚合网络,但参数和计算量较大。==为了解决这些问题,本文将颈部结构换成BiFPN,利用多尺度特征融合网络,使模型既能考虑不同输入特征的重要性,又....

RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
文章 2025-02-07 来自:开发者社区

YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合

一、本文介绍 本文记录的是基于BiFPN结构的YOLOv11颈部网络改进方法研究。在YOLOv11的Neck颈部网络中使用的FPN+PAN的结构,但是FPN在融合不同输入特征时简单地将它们相加,没有区分不同特征的重要性;PAN虽然增加了额外的自底向上路径聚合网络,但参数和计算量较大。==为了解决这些问题,本文将颈部结构换成BiFPN,利用多尺度特征融合网络,使模型既能考虑不同输入特征的重要性,又....

YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
文章 2024-07-27 来自:开发者社区

【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 介绍 摘要 在文章中,我们介绍了一种快速且准确的目标检测方法,称为DAMO-YOLO,其性能优于最先进的YOLO系列。DAMO-YOLO在YOLO的基础上扩...

【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
文章 2024-07-19 来自:开发者社区

【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征

YOLOv8目标检测创新改进与实战案例专栏 专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLOv8基础解析+创新改进+实战案例 介绍 摘要 在传统的目标检测框架中,通常采用从图像识别模型继承的主干网络来提取深层潜在特征,然后通过颈部模块融合这些潜在特征,以捕捉不同尺度的...

【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
文章 2024-07-08 来自:开发者社区

【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络

YOLOv10目标检测创新改进与实战案例专栏 专栏链接: YOLOv10 创新改进有效涨点 摘要 在计算机视觉领域,模型效率的重要性日益增加。在本文中,我们系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个关键优化以提高效率。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),...

文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)

一、本文介绍 本文给大家带来的改进机制是BiFPN双向特征金字塔网络,其是一种特征融合层的结构,也就是我们本文改进YOLOv5模型中的Neck部分,它的主要思想是通过多层级的特征金字塔和双向信息传递来提高精度。本文给大家带来的结构可以让大家自行调节网络结构大小,同时能够达到一定的轻量化效果(需要注意的是BiFPN正常是需要五个检测头的,但是YOLOv5只有三个检测头,所以我对其yaml文...

YOLOv5改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注