文章 2024-07-19 来自:开发者社区

【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 介绍 摘要 摘要:我们介绍了最新一代的MobileNets,称为MobileNetV4(MNv4),其架构设计在移动设备上具有通用的高效性。核心是我们引入...

【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV2,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2在性能上和精度上都要比V1版本强很多,其在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定...

YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
文章 2024-02-07 来自:开发者社区

YOLOv5改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV1,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。这些模型基于简化的架构,并利用深度可分离卷积构建轻量级深度神经网络,其引入了两个简单的全局超参数,用于在延迟和准确性之间进行有效的权衡。实验表明,MobileNets在资源和准确性的权衡方面表现出色,并在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中展现了...

YOLOv5改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
文章 2024-02-07 来自:开发者社区

YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV3,其主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层,以及新的高效分割解码器Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP),以提升在移动分类、检测和分割任务上...

YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。

+关注