深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等
深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等1.注意力机制在深度学习领域,模型往往需要接收和处理大量的数据,然而在特定的某个时刻,往往只有少部分的某些数据是重要的,这种情况就非常适合Attention机制发光发热。举个例子,图2展示了一个机器翻译的结果,在这个例子中,我们想将”who are you....
![深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等](https://ucc.alicdn.com/fnj5anauszhew/developer-article1196041/20241026/7a7af36a7466497895c9cc623ad57a23.png)
深度学习入门基础CNN系列——批归一化(Batch Normalization)和丢弃法(dropout)
想要入门深度学习的小伙伴们,可以了解下本博主的其它基础内容:我的个人主页深度学习入门基础CNN系列——卷积计算深度学习入门基础CNN系列——填充(padding)与步幅(stride)深度学习入门基础CNN系列——感受野和多输入通道、多输出通道以及批量操作基本概念 深度学习入门基础CNN系列——池化(Pooling)和Sigmoid、ReLU激活函数一、批归一化(Batch Normalizat....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
深度学习入门相关内容
- 深度学习入门构建网络
- 深度学习神经网络入门
- 入门深度学习
- 深度学习入门概述
- 深度学习入门实践
- 深度学习入门案例
- 深度学习入门图像
- 深度学习入门卷积
- 深度学习入门cnn
- 深度学习入门分类
- 深度学习入门反向传播
- 深度学习卷积入门
- 深度学习入门场景
- keras深度学习入门
- 深度学习入门感知机
- 深度学习入门keras
- 深度学习入门概念
- 入门人工智能深度学习
- 深度学习入门numpy
- 深度学习入门学习
- 深度学习入门集合
- 深度学习入门序列
- 深度学习入门pytorch
- 深度学习入门笔记
- 深度学习入门数字识别
- 深度学习入门笔记手写数字识别
- 深度学习入门实例
- 深度学习入门rnn
- 深度学习入门计算
- 深度学习入门卷积计算
深度学习更多入门相关
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注