天啊!深度神经网络中 BNN 和 DNN 基于存内计算的传奇之旅,改写能量效率的历史!
深度神经网络(DNN)在近年来取得了巨大的成功,广泛应用于图像识别、语音处理、自然语言处理等众多领域。而二进制神经网络(BNN)作为一种特殊的深度神经网络,也逐渐引起了研究人员的关注。同时,基于存内计算的技术为这些神经网络的实现和优化提供了新的思路。 DNN 是由大量神经元相互连接而成的网络结构&#...
m基于CNN卷积神经网络和GEI步态能量图的步态识别算法MATLAB仿真
1.算法描述 步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别,与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。在智能视频监控领域,比图像识别更具优势。步态是指人们行走时的方式,这是一种复杂的行为特征。罪犯或许会给自己化装,不让自己身上的哪怕一根毛发掉在作案现场,但有样东西他们是很难控制的,这就是走路的姿势。英国南安普敦大学电子与计算机系的马...
m基于AlexNet神经网络和GEI步态能量图的步态识别算法MATLAB仿真
1.算法描述 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。Alexnet网络模型于2012年提出。它具有更高维度的特征提取效果和更深层次的网络结构。第一次,在训练过程中使用了退出机制来防...
深度神经网络中的BNN和DNN:基于存内计算的原理、实现与能量效率
引言 深度神经网络(DNN)在机器学习领域越来越受欢迎,其在一系列任务中展现出最先进的性能。为了达到最佳结果,通常需要大量的训练数据和大型模型,从而使得训练和推理过程变得复杂。尽管图形处理单元(GPU)在许多应用中被用于提供并行计算能力,但较低能耗的平台有可能实现一系列新的应用。目前,一个趋势是降低权重和激活精度的能力,以前的研究表明,在某些情况下,权重和激活可以二值化(即二...
超低功耗AI芯片:神经脉冲只需同类神经网络能量的0.02%
这种人工智能芯片达到了新的超低功耗。人类大脑并不是很大,却承载着所有的计算任务。出于这一原因,许多研究者开始对创建模拟大脑神经信号处理的人工网络感兴趣。这种人工网络被称为脉冲神经网络(spiking neural networks, SNN)。脉冲神经网络最早由 Maass 教授于 1997 年提出,它是基于大脑运行机制的新一...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。