阿里云文档 2024-12-27

使用DeepGPU-LLM镜像构建模型的推理环境

在GPU实例上配置DeepGPU-LLM容器镜像后,可以帮助您快速构建大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)的推理环境,主要应用在智能对话系统、文本分析、编程辅助等自然语言处理业务场景,您无需深入了解底层的硬件优化细节,镜像拉取完成后,无需额外配置即可开箱即用。本文为您介绍如何在GPU实例上使用DeepGPU-LLM容器镜像构建大语言模...

阿里云文档 2024-12-27

使用vLLM镜像快速构建模型的推理环境

在GPU的实例上部署vLLM镜像后,可以帮助您快速且方便地构建大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)的推理环境,主要应用在智能对话系统、文本分类或分析等自然语言处理业务场景,您无需深入了解底层硬件,也无需额外配置即可开箱即用。本文为您介绍如何在GPU实例上使用vLLM容器镜像来快速构建大语言模型的推理服务。

阿里云文档 2024-12-27

使用TensorRT-LLM构建模型的推理环境

在GPU的实例上安装推理引擎TensorRT-LLM,可以帮助您快速且方便地构建大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)的推理环境,主要应用在智能对话系统、文本分析等自然语言处理业务场景。本文为您介绍如何在GPU实例上安装和使用TensorRT-LLM来快速构建大语言模型的高性能推理优化功能。

阿里云文档 2024-11-04

基于ModelScope模型库和GPU实例闲置计费功能低成本构建Google Gemma服务

Google在2024年02月21日正式推出了首个开源模型族Gemma,并同时上架了2b和7b两个版本。您可以使用函数计算的GPU实例以及函数计算的闲置模式低成本快速部署Gemma模型服务。

文章 2024-06-25 来自:开发者社区

为什么深度学习模型在GPU上运行更快?

引言 当前,提到深度学习,我们很自然地会想到利用GPU来提升运算效率。GPU最初是为了加速图像渲染和2D、3D图形处理而设计的。但它们强大的并行处理能力,使得它们在深度学习等更广泛的领域中也发挥了重要作用。 深度学习模型开始采用GPU是在2000年代中期到晚期,到了2012年,随着AlexNet的诞生,这种使用变得极为普遍。AlexNet是由Alex Krizhevsky、Ilya Su...

为什么深度学习模型在GPU上运行更快?
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算

前言 之前我们一直在使用CPU计算。对复杂的神经网络和大规模的数据来说,使用CPU来计算可能不够高效。本文我们将介绍如何使用单块NVIDIA GPU来计算。所以需要确保已经安装好了PyTorch GPU版本。准备工作都完成后,下面就可以通过nvidia-smi命令来查看显卡信息了。 ...

阿里云文档 2024-02-05

Deepytorch Inference推理加速介绍、优势及模型限制

Deepytorch Inference是阿里云自研的AI推理加速器,专注于为Torch模型提供高性能的推理加速。通过对模型的计算图进行切割、执行层融合以及高性能OP的实现,大幅度提升PyTorch的推理性能。本文介绍Deepytorch Inference在推理加速方面的概念、优势及模型支持情况。

文章 2022-02-17 来自:开发者社区

Python 深度学习AI - 利用训练好的模型库进行图像分割、一键抠图实例演示,百度深度学习平台飞浆paddlepaddle-gpu的安装与使用

        Python 深度学习AI - 图像分割第一章:深度学习平台飞浆 paddle 的环境搭建① 效率更高的 gpu 版本的安装② 判断是否支持 gpu 版本③ 退而求其次,普通版本的安装④ paddlehub 的安装第二章:调用训练好的库进行图像分割效果演示① 演示一:ace2p 模型② 演示二:humanseg_server 模型 ③ 演示....

Python 深度学习AI - 利用训练好的模型库进行图像分割、一键抠图实例演示,百度深度学习平台飞浆paddlepaddle-gpu的安装与使用

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

云服务器ECS

云服务器ECS是一种安全可靠、弹性可伸缩的IaaS级云计算服务。在这里你可以获取最新的ECS产品资讯、最前沿的技术交流以及优惠活动等信息,加速自己的技术成长。

+关注