如何使用Spark DataFrame API开发一个流式作业消费LogService数据
本文简单介绍如何使用Spark DataFrame API开发一个流式作业消费LogService数据。
如何通过Spark Structured Streaming流式写入Iceberg表
本文为您介绍如何通过Spark Structured Streaming流式写入Iceberg表。
Storm vs. Kafka Streams vs. Spark Streaming vs. Flink ,流式处理框架一网打尽!2
五、现有流处理框架介绍5.1 StormStorm是最老的流媒体框架,技术成熟可靠。社区也很活跃。ali还开发了jstorm,对storm进行了拓展完善。后续jstorm也融入到storm中,对于storm也是一个质的提升。比较适合于基于事件的一些简单用例场景。优点:极低的延迟,真正的流媒体,成熟和高吞吐量非常适合非复杂的流媒体用例缺点:不支持状态管理没有事件时间处理,聚合,窗口,会话,水印等高....

Storm vs. Kafka Streams vs. Spark Streaming vs. Flink ,流式处理框架一网打尽!1
文章目录一、前言二、什么是流式处理三、流式处理的重点有哪些3.1 交付保障3.2 故障容错3.3 状态管理3.4 性能3.5 成熟四、流式处理的两种类型4.1 Native流4.2 小批量处理4.3 两种类型都有一些优点和缺点五、现有流处理框架介绍5.1 Storm5.2 Spark Streaming5.3 Flink5.4 Kafka Steams5.5 Kafka Streams vs. ....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
apache spark您可能感兴趣
- apache spark技术
- apache spark大数据
- apache spark优先级
- apache spark batch
- apache spark客户端
- apache spark任务
- apache spark调度
- apache spark yarn
- apache spark作业
- apache spark Hive
- apache spark SQL
- apache spark streaming
- apache spark数据
- apache spark Apache
- apache spark Hadoop
- apache spark rdd
- apache spark MaxCompute
- apache spark集群
- apache spark运行
- apache spark summit
- apache spark模式
- apache spark分析
- apache spark flink
- apache spark学习
- apache spark Scala
- apache spark机器学习
- apache spark应用
- apache spark实战
- apache spark操作
- apache spark程序
Apache Spark 中国技术社区
阿里巴巴开源大数据技术团队成立 Apache Spark 中国技术社区,定期推送精彩案例,问答区数个 Spark 技术同学每日在线答疑,只为营造 Spark 技术交流氛围,欢迎加入!
+关注