【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D...
【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核
$stringUtil.substring( $!{XssContent1.description},200)...
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 先前的大量研究表明,注意力机制在提高深度卷积神经网络(CNN)的性能方...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。