【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现
相关链接 (1)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一Baseline方案 (2)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一ARIMA、AutoARIMA、LSTM、Prophet 多方案实现 (3)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现 (4)【第十届“泰迪杯”数据挖掘...

【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)
1 概述电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负荷、经济 状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内)预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持;长期(未来数年)预测可为电网改造、扩建等计....

基于LSTM、BP神经网络实现电力系统负荷预测(Python代码实现)
1 概述前馈神经网络的输出只依赖当前输入,但是在文本、视频、语音等时序数据中,时序数据长度并不固定,前馈神经网络的输入输出维数不能任意更改,因此难以适应这类型时序数据的处理。短期电力负荷预测的输入与输出均为时间序列,其本质仍是基于先前元素的序列预测问题,为此需要采用与前馈神经网络不同的方法,进行短期电力负荷预测。循环神经网络具有记忆功能,可提升网络性能。与前馈神经网络相比,循环神经网络具备可同时....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。