【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
(1)简单介绍一下LSTM 因为循环神经网络(Recurrent Neural Networks,RNN),本质是一个全连接网络,在处理长期依赖的问题上会出现梯度消失和梯度爆炸。长短时记忆模块(Long Short Term Memory,LSTM)...
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
原文链接:http://tecdat.cn/?p=24431 配置神经网络很困难,因为没有关于如何去做的好的理论。 您必须系统地从动态和客观结果的角度探索不同的参数配置,以尝试了解给定预测建模问题的情况。 在本教程中,您将了解如何探索如何针对时间序列预测问题配置 LSTM 网络参数。 完成本教程后,您将了解: 如何调整和解释训练时期...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。