通义灵码最佳使用实践参考__智能编码助手_AI编程
通义灵码是JetBrains或VSCode集成开发环境(IDE)中嵌入的一款智能开发助手工具,旨在通过人工智能技术简化软件开发过程,提升开发效率。本文将介绍在开发过程中如何深度体验多种辅助功能。其主要功能包括:通用大模型问答、生成单元测试、提供场景优化、编写说明文档,以及根据您的代码生成高质量AI驱动的代码等。这些功能为开发者提供了显著的便利与效率提升。
Spring Cloud Alibaba AI 入门与实践
一、概述 Spring AI 是 Spring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。 可参考文章《SpringAI:Java 开发的智能新利器》 Spring Cloud Alibaba AI 是一个将 Spring Cloud 微服务生态与阿里巴巴 AI ...
10分钟搭建一个拥有大模型能力以及专属知识库的钉钉机器人
在阿里云上,您只需 10 分钟,无需任何编码,即可为您的组织在钉钉平台上创建一个有大模型能力加成的 AI 机器人。这个机器人可以全天候(7x24)响应用户咨询,还能解答私域问题,成为您业务的专属机器人,提升用户体验,增强业务竞争力。
通义灵码单元测试实践__智能编码助手_AI编程
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
AI基础科普:机器学习入门与实践
引言 随着人工智能(AI)的发展,机器学习已成为AI领域中的核心技术之一。它不仅广泛应用于图像识别、语音识别、自然语言处理等领域,还推动了各行业的数字化转型。本文旨在通过科普与实践相结合的方式,帮助读者理解机器学习的基本概念,并通过具体的操作教程,指导如何在本地或云环境中搭建一个简单的机器学习模型。 什么是机器学习? 机器学习是一种通过算法分析数据并从中学习,进而做出预测或决策的技...
.NET面向AI编程——SK框架(SemanticKernel)的简易入门实践
首先,创建一个webapi项目。当然,此处也可以创建其他任意类型的项目,只是个人喜欢用webapi来做实践,比较方便。接着,通过nuget安装SK框架nuget包: Microsoft.SemanticKernel由于截止到目前(2023年5月28日),该框架包还是预览版,所以需要勾选预览版选项,才能搜索的到。再然后,创建连接远程机器人模型的配置文件,例如文件名称就叫 gpt.json。该配置文....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
AI更多实践相关
产品推荐
人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
+关注