CNN网络编译和训练
CNN网络编译和训练代码: 将数据扩充维度,以适应CNN模型 X_train=x_train.reshape(60000,28,28,1)X_test=x_test.reshape(10000,28,28,1)model.compile(optimizer=tf.train.AdamOptimizer(),loss="categ...
使用matlab深度学习工具箱实现CNN卷积神经网络训练仿真
1.算法描述 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一...

CNN tflearn处理mnist图像识别代码解说——conv_2d参数解释,整个网络的训练,主要就是为了学那个卷积核啊。
官方参数解释: Convolution 2D tflearn.layers.conv.conv_2d (incoming, nb_filter, filter_size, strides=1, padding='same', activation='linear', bias=True, weights_init='uniform_scaling', bias_init='zeros',...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。