阿里云文档 2025-04-14

如何使用PAI-Blade的SDK部署TensorFlow模型推理

PAI-Blade提供了C++ SDK帮助您部署优化后的模型推理。本文以TensorFlow模型为例,介绍PAI-Blade的SDK的使用方法。

文章 2024-08-31 来自:开发者社区

揭秘混合开发新趋势:Uno Platform携手Blazor,教你一步到位实现跨平台应用,代码复用不再是梦!

随着前端技术的不断发展,混合开发已成为越来越多开发者的首选方案。Uno Platform和Blazor作为.NET生态中的两大利器,它们的结合为混合开发带来了新的可能。本文将详细介绍如何使用Uno Platform和Blazor进行混合开发,并通过示例代码展示其应用场景。一、Uno Platform与Blazor简介Uno Platform是一款基于We...

阿里云文档 2024-01-03

如何使用Blade优化通过TensorFlow训练的BERT模型

BERT(Bidirectional Encoder Representation from Transformers)是一个预训练的语言表征模型。作为NLP领域近年来重要的突破,BERT模型在多个自然语言处理的任务中取得了最优结果。然而BERT模型存在巨大的参数规模和计算量,因此实际生产中对该模型具有强烈的优化需求。本文主要介绍如何使用Blade优化通过TensorFlow训练的BERT模型。

阿里云文档 2023-09-13

如何使用Blade优化基于TensorFlow的ResNet50模型_人工智能平台 PAI(PAI)

ResNet50作为一个广泛应用的经典结构网络,其优化在多种推理部署场景中都具有很高的实用价值。本文介绍如何使用Blade优化基于TensorFlow的ResNet50模型。

阿里云文档 2023-03-24

如何将Tensorflow,Pytorch和Python等模型部署到Seldon中

DataScience集群的KubeFlow服务内置了SeldonCore组件, 可以为模型提供在线服务,基于Kubernetes,您无需关心在线服务的运维工作。您可以根据提供的dsdemo代码,将Tensorflow,Pytorch和Python等模型部署到Seldon中。

文章 2023-01-11 来自:开发者社区

联邦学习 (FL) 中常见的3种模型聚合方法的 Tensorflow 示例

“客户端”是 FL 中使用的计算机和设备,它们可以彼此完全分离并且拥有各自不同的数据,这些数据可以应用同不隐私策略,并由不同的组织拥有,并且彼此不能相互访问。使用 FL,模型可以在没有数据的情况下从更广泛的数据源中学习。FL 的广泛使用的领域如下:卫生保健物联网 (IoT)移动设备由于数据隐私对于许多应用程序(例如医疗数据)来说是一个大问题,因此 FL 主要用于保护客户的隐私而不与任何其他客户或....

联邦学习 (FL) 中常见的3种模型聚合方法的 Tensorflow 示例
阿里云文档 2022-03-14

如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化

AICompiler是集成在PAI-Blade中的AI编译优化组件,包含Static Shape和Dynamic Shape编译框架。通常您无需提供额外配置,AICompiler即可在通用透明的情况下帮助您提高推理性能。本文介绍如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化。

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

人工智能

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

+关注