多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
随着大型语言模型(LLM)的迅速发展,多模态大型模型(MLLM)在视觉理解和推理任务中的应用也受到了广泛关注。然而,尽管MLLM在自然图像处理方面取得了显著进展,但在复杂和精细的图像类型(如图表、文档和图解)的理解上仍存在挑战。 近期,由浙江大学领衔的一支研...
赋予LLM视觉理解能力,360人工智能研究院开源中文多模态对话模型SEEChat(1)
作者:冷大炜,360 人工智能研究院刚刚过去的 22 年被媒体誉为 “AIGC 元年”,这一年中 AI 绘画和 chatGPT 相继引爆了全球科技界,成为人工智能领域的两大里程碑事件,特别是 chatGPT 的推出,又重新点燃了人们对通用人工智能 AGI 的新一轮期待,chatGPT 所表现出来的前...
赋予LLM视觉理解能力,360人工智能研究院开源中文多模态对话模型SEEChat(2)
SEEChat v1.0 的训练分为两个阶段:第一阶段是图文对齐训练,使用我们之前开源的高质量中文图文对数据集 Zero [7],总共 2300 万样本进行训练;第二阶段是人机对齐训练,使用 miniGPT4+LLAVA 开源的指令微调数据经英 - 中翻译后,对第一阶段训练好的模型进行指令微调。下图 7~...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。