使用ACS GPU算力构建LLM推理服务
容器计算服务 ACS(Container Compute Service)提供了高效、灵活的容器管理和编排能力,为大规模模型的部署与推理提供了强有力的支持。本文介绍如何在ACS上高效利用大模型推理镜像,实现模型服务的快速部署与规模化应用。
使用DeepGPU-LLM镜像构建模型的推理环境
在GPU实例上配置DeepGPU-LLM容器镜像后,可以帮助您快速构建大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)的推理环境,主要应用在智能对话系统、文本分析、编程辅助等自然语言处理业务场景,您无需深入了解底层的硬件优化细节,镜像拉取完成后,无需额外配置即可开箱即用。本文为您介绍如何在GPU实例上使用DeepGPU-LLM容器镜像构建大语言模...
使用ASM回退功能构建高可用的LLM服务
在LLM场景中,业务应用需要对接内部或外部的基础模型服务。服务网格 ASM(Service Mesh)支持同时对接多个基础模型服务,并且可以实现当一个模型服务不可用时,自动回退到另一个模型服务,助力企业实现LLM应用的高可用。本文介绍如何在对接LLM服务时使用流量回退功能。
通过阿里云Milvus和LangChain快速构建LLM问答系统
阿里云向量检索服务 Milvus 版是一款云上全托管服务,确保了与开源Milvus的100%兼容性,并支持无缝迁移。在开源版本的基础上增强了可扩展性,能提供大规模 AI 向量数据的相似性检索服务。相比于自建,目前阿里云Milvus具备易用性、可用性、安全性、低成本与生态优势。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,阿里云Milvus 云服务成为多样化 AI 应用场景的理想选择,包括....
通过Milvus和LangChain快速构建LLM问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
一、体验概述 本次体验(文档智能 & RAG让AI大模型更懂业务)活动,特别是其在文档智能和检索增强生成(RAG)结合构建的LLM知识库方面的表现。体验过程中,我们重点关注了文档内容清洗、文档内容向量化、问答内容召回以及通过特定Prompt为LLM提供上下文信息的能力,以判断其是否能够满足企业级文档类型知识库的问答处理...
基于阿里云函数计算(FC)x 云原生 API 网关构建生产级别 LLM Chat 应用方案最佳实践
LLM Chat 应用大家应该都不陌生,这类应用也逐渐称为了我们日常的得力助手,如果只是个人使用,那么目前市面上有很多方案可以快速的构建出一个LLM Chat应用,但是如果要用在企业生产级别的项目中,那对整体部署架构,使用组件的性能,健壮性,扩展性要求还是比较高的。本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。 该最佳实...
如何通过云上数据库一站式构建RAG系统
随着AIGC技术日新月异的发展,LLM应用也在持续迭代,检索增强生成(RAG)系统已经成为企业知识库、智能客服、电商导购等场景的核心环节。阿里云OpenSearch-LLM智能问答版联合数据集成Data Integration产品,帮助企业和开发者实现分钟级构建专属RAG系统。本教程介绍如何通过云上数据库一站式构建RAG系统。
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。 免费试用 前提条件 已创建Milvus实例。具体操作,请参见快速创建Milvus实例。 已开通PAI(EA...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。