【机器学习】探索GRU:深度学习中门控循环单元的魅力
学习目标 了解GRU内部结构及计算公式. 掌握Pytorch中GRU工具的使用. 了解GRU的优势与缺点. GRU介绍 GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LST...
【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测
1. 门控循环单元设计 门控循环单元的设计在原始RNN的基础上引入了重置门(reset gate)和更新门(update gate)的概念,从而修改了循环神经网络中隐藏状态的计算方式。 1.1 重置门和更新门 如下图所示,门控循环单元中的重置门和更新门的输入均为当前时间步输入Xt与上一时间步隐藏状态Ht−1,输出由激活函数为sigmoid函数的全连接层计算得到。 ...
深度学习基础入门篇-序列模型[11]:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解
深度学习基础入门篇-序列模型[11]:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解 1.循环神经网络 RNN 生活中,我们经常会遇到或者使用一些时序信号,比如自然语言语音,自然语言文本。以自然语言文本为例,完整的一句话中各个字符之间是有时序关系的,各个字符顺序的调换有可能变成语义完全不同的两句话,就像下面这个句子: 张三非常生气,冲动之下打了李四 ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
+关注