阿里云文档 2024-12-03

Llama-3模型部署与微调

Llama-3是Meta AI推出的开源大语言模型系列(接近GPT-4级别)。该系列模型利用超过15万亿Token的公开数据进行预训练,提供Base和Instruct等多版本、多规模的开源模型,从而满足不同的计算需求。PAI已对该系列模型进行全面支持,本文以Meta-Llama-3-8B-Instruct模型为例为您介绍如何在Model Gallery中部署和微调该系列模型。

阿里云文档 2024-11-20

通义千问1.5模型部署与微调

通义千问1.5(qwen1.5)是阿里云研发的通义千问系列开源大模型。该系列包括Base和Chat等多版本、多规模的开源模型,从而满足不同的计算需求。PAI已对该系列模型进行全面支持,本文以通义千问1.5-7B-Chat模型为例为您介绍如何在Model Gallery中部署和微调该系列模型。

阿里云文档 2024-11-15

大语言模型数据增强与模型蒸馏解决方案

大语言模型的训练和推理过程存在高能耗及长响应时间等问题,这些问题限制了其在资源有限场景中使用。为了解决这些问题,PAI提出了模型蒸馏功能。该功能支持将大模型知识迁移到较小模型,从而在保留大部分性能的同时,大幅降低模型的规模和对计算资源的需求,为更多的实际应用场景提供支持。本文将以通义千问2(Qwen2)大语言模型为基础,为您介绍大语言模型数据增强和蒸馏解决方案的完整开发流程。

阿里云文档 2024-10-22

大模型评测

大模型评测

文章 2024-10-20 来自:开发者社区

手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南

评估一个机器学习模型的性能是整个开发流程中的关键步骤,它决定了模型是否能够有效应用于现实世界的问题。性能评估不仅需要考虑模型的准确性,还需要综合考量诸如可解释性、运行速度、内存消耗等因素。然而,最基本的评估通常聚焦于模型的预测能力是否符合预期。 针对不同的任务类型,如分类、回归、聚类等,评价指标也会有所不同。例如,...

文章 2023-06-14 来自:开发者社区

学习笔记: 机器学习经典算法-分类算法模型的评价指标

1、分类准确度(accuracy) 分类准确率(ACC,accuracy ): 该指标描述了统计测试集的模型预测结果与真实标签的一致度,是一般情况下在 无倾斜样本总体 的分类评价中最常用的指标,准确率越高,意味着分类模型效果越好。$$ACC = \frac {TN+TP}{TN+FP+FN+TP}$$np.sum( Y_predict ==Test_Y)/len(Test_y) 缺...

学习笔记: 机器学习经典算法-分类算法模型的评价指标

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

人工智能平台PAI

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

+关注