【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
介绍 摘要 许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简....
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
介绍 摘要 许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简....
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
介绍 摘要 我们旨在为目标检测领域提供一种高效且性能卓越的目标检测器,称为YOLO-MS。其核心设计基于一系列调查研究,关于不同核心大小的卷积如何影响不同尺度物体的检测性能。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示能力。为验证我们策略的有效性,我们构建了一个网络架构,命名为YOLO-MS。我们从零开始在...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
域名解析DNS
关注DNS技术、标准、产品和行业趋势,连接国内外相关技术社群信息,加强信息共享。
+关注