文章 2024-11-07 来自:开发者社区

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

介绍 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符.....

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
文章 2024-06-30 来自:开发者社区

【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D...

【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。