通义灵码最佳使用实践参考__智能编码助手_AI编程
通义灵码是JetBrains或VSCode集成开发环境(IDE)中嵌入的一款智能开发助手工具,旨在通过人工智能技术简化软件开发过程,提升开发效率。本文将介绍在开发过程中如何深度体验多种辅助功能。其主要功能包括:通用大模型问答、生成单元测试、提供场景优化、编写说明文档,以及根据您的代码生成高质量AI驱动的代码等。这些功能为开发者提供了显著的便利与效率提升。
智能化软件测试:AI驱动的自动化测试策略与实践####
随着软件开发周期的不断加速和产品复杂性的日益增加,传统的软件测试方法逐渐暴露出其局限性,尤其是在应对大规模、高频率迭代的项目时。为了解决这些问题,越来越多的企业开始探索将人工智能技术融入软件测试流程中,以期实现更加高效、精准的测试覆盖。 一、传统软件测试的挑战 传统软件测试依赖于大量的手工操作,从测试计划制定、测试用例设计到执...
10分钟搭建一个拥有大模型能力以及专属知识库的钉钉机器人
在阿里云上,您只需 10 分钟,无需任何编码,即可为您的组织在钉钉平台上创建一个有大模型能力加成的 AI 机器人。这个机器人可以全天候(7x24)响应用户咨询,还能解答私域问题,成为您业务的专属机器人,提升用户体验,增强业务竞争力。
通义灵码单元测试实践__智能编码助手_AI编程
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
构建高效AI模型:深度学习优化策略和实践
随着计算能力的飞速提升和大数据时代的到来,深度学习已经成为解决复杂问题的有力工具。然而,一个成功的AI模型不仅需要大量的数据和计算资源,更需要精心设计的优化策略来充分发挥其潜力。以下是我们探讨的几个关键优化领域。 首先是数据预处理的重要性。数据是深度学习模型的基石,高质量的数据集能够大幅提升模型性能。预处理包括数据清洗、标准化、归一化等步骤...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
AI更多实践相关
产品推荐
人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
+关注