阿里云文档 2025-03-21

如何在DLC中使用PerfTracker进行性能诊断

PerfTracker是一个用于大模型训练的在线性能分析诊断工具,基于高精度的软硬件全栈信息在线监控。当任务性能出现问题时,它能在线获取各个Worker的所有CUDA核函数、Python函数执行记录及硬件监控记录,并生成分析报告,自动化诊断性能损失原因,如慢节点定位、瓶颈/耗时异常函数以及Hang问题等。本文为您介绍如何使用PerfTracker。

文章 2024-11-27 来自:开发者社区

机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况

在机器学习中,评估模型的性能是至关重要的环节。混淆矩阵和 ROC 曲线是两种常用的评估工具,它们能够提供关于模型预测结果的详细信息。本文将深入探讨混淆矩阵与 ROC 曲线的原理、计算方法以及在 Python 中的应用。 一、混淆矩阵 混淆矩阵是一种以矩阵形式呈现的评估指标,它能够展示模型在不同类别上的预测情况。混淆矩阵的行表示实际类别,列表...

阿里云文档 2023-12-22

使用Pai-Megatron-Patch优化PyTorch版Transformer模型训练

本文介绍如何使用Pai-Megatron-Patch优化PyTorch版Transformer模型训练。

文章 2022-10-10 来自:开发者社区

机器学习:性能度量篇-Python利用鸢尾花数据绘制ROC和AUC曲线

前言内容接上一篇机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线_fanstuck的博客-CSDN博客_python鸢尾花混淆矩阵上篇文章提到的这篇文章不做过多叙述。提示:以下是本篇文章正文内容,下面案例可供参考一、ROC与AUC很多学习器是为了测试样本产生的一个实值或概率预测,然后将这个预测值与一个分类阈值(threshold)进行比较,若大于阈值则分为正类,否则为反类。主要看需....

机器学习:性能度量篇-Python利用鸢尾花数据绘制ROC和AUC曲线
文章 2022-10-10 来自:开发者社区

机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线

前言本人大数据专业初入大三刚刚接触机器学习这一课程,教材是最典型的西瓜书,第一次作业当然就是利用本专业语言多功能python语言结合书内容尝试自己构建P-R曲线以及延伸指标曲线。当然初入一些算法和机器学习的一些库还不是很熟练掌握,有待提升自己的编程结合能力。在此领域本人有诸多不明确疑问,可能文章会有些许错误,望大家在评论区指正,本篇文章错误将会不断更正维护。提示:以下是本篇文章正文内容,下面案例....

机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

人工智能平台PAI

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

+关注