文章 2025-03-31 来自:开发者社区

9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体

生成对抗网络(GANs)的训练效果很大程度上取决于其损失函数的选择。本研究首先介绍经典GAN损失函数的理论基础,随后使用PyTorch实现包括原始GAN、最小二乘GAN(LS-GAN)、Wasserstein GAN(WGAN)及带梯度惩罚的WGAN(WGAN-GP)在内的多种损失函数。生成对抗网络(GANs)的工作原理堪比一场精妙的艺术创作过程——生成器(Generator)扮演创作者角色,不....

9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
文章 2025-01-03 来自:开发者社区

深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现

深度强化学习是人工智能领域最具挑战性的研究方向之一,其设计理念源于生物学习系统从经验中优化决策的机制。在众多深度强化学习算法中,软演员-评论家算法(Soft Actor-Critic, SAC)因其在样本效率、探索效果和训练稳定性等方面的优异表现而备受关注。 传统的深度强化学习算法往往在探索-利用权衡、训练稳定性等方面面临挑战。SAC算法通过引入最大熵强化学习框架,在策略优化过程中自动调节探索程....

深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
文章 2024-07-20 来自:开发者社区

多任务高斯过程数学原理和Pytorch实现示例

高斯过程其在回归任务中的应用我们都很熟悉了,但是我们一般介绍的都是针对单个任务的,也就是单个输出。本文我们将讨论扩展到多任务gp,强调它们的好处和实际实现。 本文将介绍如何通过共区域化的内在模型(ICM)和共区域化的线性模型(LMC),使用高斯过程对多个相关输出进行建模。 多任务高斯过程 高斯过程是回归和分类任务中的一个强大工具,提供了一种非参数方式来定义函数的分布。当处理多个相关输出...

多任务高斯过程数学原理和Pytorch实现示例

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像