阿里云文档 2025-04-03

机器学习线性支持向量机算法组件的配置及示例

支持向量机SVM(Support Vector Machine)是基于统计学习理论的一种机器学习方法,通过寻求结构风险最小化,提高学习机泛化能力,从而实现经验风险和置信范围最小化。本文介绍线性支持向量机算法组件的配置方法及使用示例。

文章 2025-01-03 来自:开发者社区

机器学习算法的优化与改进:提升模型性能的策略与方法

机器学习(Machine Learning, ML)作为人工智能的重要组成部分,已经在各个领域得到了广泛应用。然而,机器学习模型的性能并不是一成不变的。为了在实际应用中获得更好的效果,优化和改进机器学习算法显得尤为重要。本文将详细介绍几种常见的优化和改进机器学习算法的方法,并结合Python代码示例进行说明。 引...

机器学习算法的优化与改进:提升模型性能的策略与方法
文章 2023-06-14 来自:开发者社区

学习笔记: 机器学习经典算法-回归模型性能评估

在实际使用的时候,训练线性回归模型的数据来源于从原始数据集拆分出来的训练集(train_data),模型的损失函数也是对应训练集的,即$\sum^{m}_{i} {(\hat y^{(i)}_{train} - y^{(i)}_{train})^{2}} $。 ① 均方误差(Mean Square Error) $MSE = \frac {1}...

文章 2022-02-17 来自:开发者社区

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能

说明在    ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(18+2)进行回归预测值VS真实值基础上出现了两个bug,成功解决。(1)、成功解决TypeError: unhashable type: 'numpy.ndarray'(2)、成功解决TypeError: unsupported operand type(s) for %: 'NoneType' a....

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能
文章 2022-02-17 来自:开发者社区

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能

输出结果数据的初步查验:输出回归目标值的差异The max target value is 50.0The min target value is 5.0The average target value is 22.532806324110677LiR:The value of default measurement of LiR is 0.6763403830998702LiR:R-squar....

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
文章 2022-02-17 来自:开发者社区

ML之回归预测:利用九大类机器学习算法对无人驾驶系统参数(2018年的data,18+2)进行回归预测+评估九种模型性能

输出记录1、第一次输出错误记录数据的初步查验:输出回归目标值的差异The max target value is PeakNonedb    89dtype: int64The min target value is PeakNonedb    56dtype: int64The average target value is PeakNonedb &...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注