TransferTOD:利用LLM解决TOD系统在域外场景槽位难以泛化的问题
任务型对话系统旨在高效处理任务导向的对话,如何利用任务型对话系统准确、高效、合理地完成信息采集的工作一直是一项关键且具有挑战性的任务。目前的槽位填充数据集大多服务于用户主导型系统,往往会局限于预设好的特定场景和特定槽位。而在“客服-用户”信息收集这一系统主导型的对话场景中,需要填充的槽位与槽位值往往是陌生的,填槽的准确率会严重下降,系统也无法根据槽位填充的情况提出准确的问题引导用户回答,完成下一....

【大模型】LLM 如何处理域外或无意义的提示?
LLM处理域外或无意义提示的挑战与解决方案 挑战: 当大语言模型(LLM)面对域外或无意义的提示时,会面临一些挑战。这些挑战主要包括: 语义理解困难: 域外或无意义的提示可能缺乏明确的语义信息,使得模型难以理解提示的意图或生成与之相关的有意义文本。 内容生成不准确: 缺乏有意义的提示可能导致模型生成的文本内容与预期不符,甚至是毫无意义的内容,降低了生成文本的质量和可用性。 模型...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。