RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
一、本文介绍 本文记录的是基于U-Net V2的RT-DETR目标检测改进方法研究。本文利用U-Net V2替换RT-DETR的骨干网络,UNet V2通过其独特的语义和细节融合模块(SDI),能够为骨干网络提供更丰富的特征表示。并且其中的注意力模块可以使网络聚焦于图像中与任务相关的区域,增强对关键区域特征的提取,进而提高模型精度。本文配置了原论文中pvt_v2_b0、pvt_v2_b1、pvt....

YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
一、本文介绍 本文记录的是基于U-Net V2的YOLOv11目标检测改进方法研究。本文利用U-Net V2替换YOLOv11的骨干网络,UNet V2通过其独特的语义和细节融合模块(SDI),能够为骨干网络提供更丰富的特征表示。并且其中的注意力模块可以使网络聚焦于图像中与任务相关的区域,增强对关键区域特征的提取,进而提高模型精度。本文配置了原论文中pvt_v2_b0、pvt_v2_b1、pvt....

纯卷积Backbone巅峰 | MogaNet登峰造极,超越ConvNeXt、ParC-Net和SWin(二)
4、本文方法4.1、概览MogaNet图A1提供了4阶段MogaNet架构的说明。对于阶段i,输入图像或特征首先被馈送到嵌入Stem中以调节特征分辨率并嵌入到维度中。假设输入图像为H×W分辨率,4个阶段的特征分别为H/4×W/4、H/8×W/8、H/16×W/16和H/32×W/32分辨率。然后,嵌入的特征流到 Moga块中,Moga块由空间和通道聚合块组成,用于进一步的上下文提取和聚合。GAP....

纯卷积Backbone巅峰 | MogaNet登峰造极,超越ConvNeXt、ParC-Net和SWin(一)
自从Vision Transformers(ViT)取得成功以来,对Transformers架构的探索也引发了现代ConvNets的复兴。在这项工作中,通过交互复杂性的角度来探索DNN的表示能力。经验表明,交互复杂性是视觉识别的一个容易被忽视但又必不可少的指标。因此,本文作者提出了一个新的高效ConvNet系列,名为MogaNet,以在基于ConvNet的纯模型中进行信息上下文挖掘,并在复杂度和....

纯卷积Backbone巅峰 | MogaNet登峰造极,超越ConvNeXt、ParC-Net和SWin
自从Vision Transformers(ViT)取得成功以来,对Transformers架构的探索也引发了现代ConvNets的复兴。在这项工作中,通过交互复杂性的角度来探索DNN的表示能力。经验表明,交互复杂性是视觉识别的一个容易被忽视但又必不可少的指标。因此,本文作者提出了一个新的高效ConvNet系列,名为MogaNet,以在基于ConvNet的纯模型中进行信息上下文挖掘,并在复杂度和....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
开发与运维
集结各类场景实战经验,助你开发运维畅行无忧
+关注