YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
一、本文介绍 本文记录的是基于MobileNet V1的YOLOv11轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到YOLOv11中,有望借助其高效的结构和特性,提升YOLOv11在计算资源有限环境下的性能表现,同时保持一定的精度....

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化YOLOv11中的C3k2。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 YOLOv11m 20.0M 67.6GFLOPs 3.5ms Im...

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
介绍 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符.....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
神经网络卷积相关内容
- 系统卷积神经网络
- rt-detr轻量卷积神经网络
- 策略轻量moblienetv1卷积神经网络
- 视觉卷积神经网络
- 轻量卷积神经网络
- 轻量级卷积神经网络
- yolov11轻量级卷积神经网络
- yolov11策略轻量卷积神经网络
- 卷积神经网络实践
- 卷积神经网络图像识别
- simam轻量级卷积神经网络
- 注意力机制卷积神经网络
- 卷积神经网络算法仿真
- 贝叶斯卷积神经网络
- 卷积神经网络数据分类
- 卷积神经网络计算机
- 卷积神经网络概述
- 卷积神经网络积层
- 卷积神经网络池化层
- 卷积神经网络图像
- 卷积神经网络界面
- 卷积神经网络resnet
- 卷积神经网络数据集分类
- 实践卷积神经网络
- 技术卷积神经网络
- 卷积神经网络视觉
- yolov8卷积神经网络
- keras卷积神经网络
- shufflenet卷积神经网络
- yolov8轻量级卷积神经网络
神经网络更多卷积相关
- 图神经网络卷积神经网络
- 结构卷积神经网络
- 卷积神经网络循环神经网络
- 卷积神经网络车牌
- 卷积神经网络vgg16
- 生物卷积神经网络
- 目标检测卷积神经网络
- vgg卷积神经网络
- 学习卷积神经网络
- 卷积神经网络googlenet
- dl卷积神经网络
- 卷积神经网络图像分类
- 卷积神经网络数字识别
- 回归预测卷积神经网络
- 卷积神经网络检测
- 实验卷积神经网络
- 卷积神经网络图像分割
- 卷积神经网络alexnet
- 卷积神经网络gui
- 卷积神经网络lenet
- 卷积神经网络实例
- 卷积神经网络目标检测
- 卷积神经网络动物
- 课程卷积神经网络
- 卷积神经网络口罩
- 卷积神经网络参数
- 卷积神经网络图片识别
- 卷积神经网络特征
- 卷积神经网络文章
- resnet卷积神经网络