文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化YOLOv11中的C3k2。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 YOLOv11m 20.0M 67.6GFLOPs 3.5ms Im...

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
文章 2024-11-07 来自:开发者社区

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

介绍 摘要 在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符.....

【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。