向量降维服务训练
向量降维服务训练功能支持结合用户提供的向量数据,定制训练向量降维模型。实际业务场景中,先通过向量化模型对文本或者Query向量化,然后结合向量降维模型降低向量维度。
使用抢占式实例弹性训练以降低AI模型的训练成本
为降低使用AI模型训练成本,云原生AI套件推出基于抢占式实例的弹性训练解决方案,该方案可以将AI模型训练这种有状态类型的工作负载运行在抢占式实例上,几乎可以做到在不影响训练作业成功率的情况下降低训练成本。
PAI-AI训练任务支持通过云监控或ARMS进行监控与报警
分布式训练(DLC)任务支持查看和监控资源状况,提供详细的监控指标,帮助您掌握资源负载情况。通过监控报警功能,您可以实时监控DLC任务的资源水位,并配置报警规则和通知。如果资源水位出现波动,例如GPU使用率超过设定阈值,会发送报警通知。本文为您介绍如何通过云监控和ARMS查看监控数据、配置监控报警通...
Light-A-Video:好莱坞级打光自由!上海AI Lab开源视频打光AI,无需训练秒改画面氛围,3步让阴天变夕阳
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术! AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 “导演集体破防!上海AI Lab祭出视频重照明核武器:30秒解决好莱坞百万级调光难题” 大家好,我是蚝油菜花。...

使用DeepNCCL加速模型的分布式训练或推理性能
DeepNCCL是阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL进行通信算子调用的分布式训练或多卡推理等任务。开发人员可以根据实际业务情况,在不同的GPU云服务器上安装DeepNCCL通信库,以加速分布式训练或推理性能。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用DeepNCCL的操作方法。
AI加速:使用TorchAcc实现Stable Diffusion模型分布式训练加速
阿里云PAI为您提供了部分典型场景下的示例模型,便于您便捷地接入TorchAcc进行训练加速。本文为您介绍如何在Stable Diffusion分布式训练中接入TorchAcc并实现训练加速。
Sea AI Lab和北大Adan项目原作解读:加速训练深度模型的高效优化器
自 Google 提出 Vision Transformer (ViT)以来,ViT 渐渐成为许多视觉任务的默认 backbone。凭借着 ViT 结构,许多视觉任务的 SOTA 都得到了进一步提升,包括图像分类、分割、检测、识别等。然而,训练 ViT 并非易事。除了需要较复杂的训练技巧,模型训练的计算量往往也较之前的 CNN 大很多。近日,新加坡 Sea AI Lab 和北大 ZERO Lab....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
AI更多训练相关
产品推荐
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
+关注