使用抢占式实例弹性训练以降低AI模型的训练成本
为降低使用AI模型训练成本,云原生AI套件推出基于抢占式实例的弹性训练解决方案,该方案可以将AI模型训练这种有状态类型的工作负载运行在抢占式实例上,几乎可以做到在不影响训练作业成功率的情况下降低训练成本。
PAI-AI训练任务支持通过云监控或ARMS进行监控与报警
分布式训练(DLC)任务支持查看和监控资源状况,提供详细的监控指标,帮助您掌握资源负载情况。通过监控报警功能,您可以实时监控DLC任务的资源水位,并配置报警规则和通知。如果资源水位出现波动,例如GPU使用率超过设定阈值,会发送报警通知。本文为您介绍如何通过云监控和ARMS查看监控数据、配置监控报警通...
向量降维服务训练
向量降维服务训练功能支持结合用户提供的向量数据,定制训练向量降维模型。实际业务场景中,先通过向量化模型对文本或者Query向量化,然后结合向量降维模型降低向量维度。
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术! AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 “调参侠的终极解放!这个AI框架正在改写模型优化规则:不用微调不用标注,输入问题自动变聪明” 大家好,我是蚝油...

使用DeepNCCL加速模型的分布式训练或推理性能
DeepNCCL是阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL进行通信算子调用的分布式训练或多卡推理等任务。开发人员可以根据实际业务情况,在不同的GPU云服务器上安装DeepNCCL通信库,以加速分布式训练或推理性能。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用DeepNCCL的操作方法。
AI加速:使用TorchAcc实现Stable Diffusion模型分布式训练加速
阿里云PAI为您提供了部分典型场景下的示例模型,便于您便捷地接入TorchAcc进行训练加速。本文为您介绍如何在Stable Diffusion分布式训练中接入TorchAcc并实现训练加速。
SCEdit:轻量级高效可控的AI图像生成微调框架(附魔搭社区训练实践教程)
以大规模预训练的图像扩散模型为基础,研究人员专注于各种下游任务和应用,包括文生图、可控图像生成和图像编辑等。然而,在大多数定制化场景中,由于受到训练数据和计算资源的限制,完全微调一个基础图像扩散模型往往是低效甚至不切实际的。SCEdit是一个高效的生成式微调框架,由阿里巴巴通义实验室基础视觉智能团队所提出。该框架支持文生图下游任务的微调能力,实现快速迁移到特定的生成场景中,可相比LoRA节省30....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
AI更多训练相关
产品推荐
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
+关注