零训练成本优化LLM: 11种LLM权重合并策略原理与MergeKit实战配置
随着大语言模型的快速发展,如何在不消耗大量计算资源的情况下优化模型性能成为业界关注焦点。模型权重合并技术提供了一种零训练成本的高效解决方案,能够智能整合多个专业微调模型的优势,无需额外训练即可显著提升性能表现。本文系统剖析11种前沿权重合并策略的理论基础与数学原理,从简单的线性插值到复杂的几何映射方法,并通过开源工具MergeKit提供详细的实战配置示例。无论您是AI研究人员寻求最优参数组合,企....
大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数(Scoring Function)设计以及ICL底层机制等原理详解
大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数(Scoring Function)设计以及ICL底层机制等原理详解 1.In-Context Learning背景与定义 背景 大规模预训练语言模型(LLM)如 GPT-3 是在大规模的互联网文本数据上训练,以给定的前缀来预测生成下一个 token(Next ...
![大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数(Scoring Function)设计以及ICL底层机制等原理详解](https://ucc.alicdn.com/fnj5anauszhew_20230719_fb8a261460ec4839aa48b9d34a53f4be.png)
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。