加速LLM大模型推理,KV缓存技术详解与PyTorch实现
随着大型语言模型(LLM)规模和复杂度的指数级增长,推理效率已成为人工智能领域亟待解决的关键挑战。当前,GPT-4、Claude 3和Llama 3等大模型虽然表现出强大的理解与生成能力,但其自回归解码过程中的计算冗余问题依然显著制约着实际应用场景中的响应速度和资源利用效率。 键值(KV)缓存技术作为Transformer架构推理优化的核心策略,通过巧妙地存储和复用注意力机制中的中间计算结果,有....
5种常用于LLM的令牌遮蔽技术介绍以及Pytorch的实现
本文将介绍大语言模型中使用的不同令牌遮蔽技术,并比较它们的优点,以及使用Pytorch实现以了解它们的底层工作原理。 令牌掩码Token Masking是一种广泛应用于语言模型分类变体和生成模型训练的策略。BERT语言模型首先使用,并被用于许多变体(RoBERTa, ALBERT, DeBERTa…)。 而Text Corruption是一种更大的令牌遮蔽策略。在BART研究论文中,进行了大...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。