文章 2023-08-07 来自:开发者社区

【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)

1 概述1.1 ARIMA模型差分自回归移动平均模型( ARIMA)元一PE用于各领域的预测模型 17-19],主要包含自回归模型和移动平均模型2个部分。自回归模型的阶数为p,信号差分的阶数为d ,移动平均模型的阶数为q,因此模型通常表示成ARIMA( p,d ,q) ,具体的数学表达式为:( 1)对所研究的时间序列数据进行平稳性验证,如果不满足要求,则对其进行d阶差分转换成平稳时间序列。(2)....

【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)
文章 2023-08-07 来自:开发者社区

【SSA-LSTM】基于SSA-LSTM预测研究(Python代码实现)

1 概述LSTM 是一 种 带 有 记 忆 与 遗 忘 模 式 的 特 殊 递归神经网络,解决了传统递归神经网络在反向误差传播算法训练中出现的梯度消失与爆炸问题[5]。在时序处理上,LSTM 可对原始序列时间相关性充分利用,比其他机器学习方法更显优势[69]。如图1所示为 LSTM 单元结构。麻雀搜索算法模拟麻雀觅食和反捕食行为,具有寻优能力 强、收敛速度快和稳定性好等特点[10]。麻雀种群分发....

【SSA-LSTM】基于SSA-LSTM预测研究(Python代码实现)
文章 2023-08-05 来自:开发者社区

【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)

1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的变化规律因受到气象、节假日等多种因素的影响,导致负荷的随机性和波动性较大,并且需要输入的模型参数较多,使用传统的预测方法难以胜任。1.....

【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
文章 2023-07-30 来自:开发者社区

基于LSTM神经网络的电力负荷预测(Python代码实现)

1 概述前馈神经网络的输出只依赖当前输入,但是在文本、视频、语音等时序数据中,时序数据长度并不固定,前馈神经网络的输入输出维数不能任意更改,因此难以适应这类型时序数据的处理。短期电力负荷预测的输入与输出均为时间序列,其本质仍是基于先前元素的序列预测问题,为此需要采用与前馈神经网络不同的方法,进行短期电力负荷预测。循环神经网络具有记忆功能,可提升网络性能。与前馈神经网络相比,循环神经网络具备可同时....

基于LSTM神经网络的电力负荷预测(Python代码实现)
文章 2023-07-30 来自:开发者社区

【状态估计】将变压器和LSTM与卡尔曼滤波器结合到EM算法中进行状态估计(Python代码实现)

1 概述文章来源:卡尔曼滤波器需要模型的真实参数,并递归地求解最优状态估计期望最大化(EM)算法适用于估计卡尔曼滤波之前不可用的模型参数,即EM-KF算法。为了提高EM-KF算法的准确性,作者提出了一种状态估计方法,该方法在序列到序列的编码器-解码器(seq2seq)框架下,将长-短期存储器网络(LSTM)、变压器和EM-KF方法相结合。对线性移动机器人模型的仿真表明,新方法更准确。卡尔曼滤波需....

【状态估计】将变压器和LSTM与卡尔曼滤波器结合到EM算法中进行状态估计(Python代码实现)
文章 2023-07-30 来自:开发者社区

基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)

1 概述电力负荷预测实质是时间序列预测问题,存在非平稳性和影响因素的复杂性。为了提高预测精度,解决长短期记忆神经网络(LSTM)参数选取随机性大、选取困难的问题,本文提出了一种利用麻雀搜索算法(SSA)优化长短期记忆神经网络参数的短期电力负荷预测模型(SSA-LSTM),通过历史用电负荷数据、相关影响因素数据对待预测日进行负荷预测。本文建立SSA-LSTM模型,进行冷、热、电负荷预测。先对时间序....

基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测(Python代码实现)
文章 2023-07-30 来自:开发者社区

基于LSTM、BP神经网络实现电力系统负荷预测(Python代码实现)

1 概述前馈神经网络的输出只依赖当前输入,但是在文本、视频、语音等时序数据中,时序数据长度并不固定,前馈神经网络的输入输出维数不能任意更改,因此难以适应这类型时序数据的处理。短期电力负荷预测的输入与输出均为时间序列,其本质仍是基于先前元素的序列预测问题,为此需要采用与前馈神经网络不同的方法,进行短期电力负荷预测。循环神经网络具有记忆功能,可提升网络性能。与前馈神经网络相比,循环神经网络具备可同时....

基于LSTM、BP神经网络实现电力系统负荷预测(Python代码实现)
文章 2023-07-13 来自:开发者社区

【CEEMDAN-CNN-LSTM】完备集合经验模态分解-卷积神经长短时记忆神经网络研究(Python代码实现)

欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1 概述1.1 完备集合经验模态分解原理1.2 鲸鱼优化1.3 LSTM2 运行结果3 参考文献4 Python代码实现1 概述参考文献:1.1 完备集合经验模态分解原理早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中容易出现模....

【CEEMDAN-CNN-LSTM】完备集合经验模态分解-卷积神经长短时记忆神经网络研究(Python代码实现)
文章 2023-07-13 来自:开发者社区

【VMD-LSTM】变分模态分解-长短时记忆神经网络研究(Python代码实现)

欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1 概述1.1 变分模态分解算法1.2 LSTM2 运行结果编辑3 参考文献4 Python代码实现1 概述参考文献:1.1 变分模态分解算法变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomir....

【VMD-LSTM】变分模态分解-长短时记忆神经网络研究(Python代码实现)
文章 2023-07-13 来自:开发者社区

【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1 概述1.1 变分模态分解算法1.2 蜣螂优化算法1.3 LSTM2 运行结果3 参考文献4 Python代码实现1 概述1.1 变分模态分解算法变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Drago....

【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像