54_模型优化:大模型的压缩与量化
深度解析大模型瘦身技术与工程实践 大模型优化技术演进 ├── 早期阶段(2018-2020): 基本剪枝、8位量化,性能损失明显 ├── 发展阶段(2021-2023): 知识蒸馏、结构化剪枝,平衡效率与精度 └── 成熟阶段(2024-2025): 混合精度量化、参数高效微调,成本降至原1/30 引言 随着大型语言模型(LLM)的快速发展,...
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文较长,建议点赞收藏,以免遗失。 本文系统拆解深度学习中模型剪枝、量化、知识蒸馏三大核心压缩技术,帮助各位实现16倍模型压缩与4倍推理加速。如果对你有所帮助,记得点个小红心。 一、模型压缩的核心挑战 深度学习模型规模激增带来四大痛点: 存储膨胀:ResNet-50达98MB,GP...
大模型压缩量化方案怎么选?无问芯穹Qllm-Eval量化方案全面评估:多模型、多参数、多维度
大模型的压缩量化方案,是当前人工智能领域备受关注的话题。在追求高效能和低功耗的背景下,如何在保证模型性能的前提下,最大限度地减少模型的计算和存储开销,成为众多研究者和工程师面临的挑战。 最近,一项名为"无问芯穹Qllm-Eval"的量化方案评估研究引起了广泛关注。这项研究由来自清华大学、Infinigence ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
通义大模型
阿里云自主研发的通义大模型,凭借万亿级超大规模数据训练和领先的算法框架,实现全模态高效精准的模型服务调用。https://www.aliyun.com/product/tongyi
+关注