文章 2025-09-13 来自:开发者社区

Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节

对于神经网络来说,我们已经习惯了层状网络的思维:数据进来,经过第一层,然后第二层,第三层,最后输出结果。这个过程很像流水线,每一步都是离散的。 但是现实世界的变化是连续的,比如烧开水,谁的温度不是从30度直接跳到40度,而是平滑的上生。球从山坡滚下来速度也是渐渐加快的。这些现象背后都有连续的规律在支配。 微分方程就是描述这种连续变化的语言。它不关心某个时刻的具体数值,而是告诉你"变化的速度"。比....

Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
阿里云文档 2025-04-27

使用PAI Python SDK训练和部署PyTorch模型

PAI Python SDK提供了更易用的HighLevel API,支持您在PAI完成模型的训练和部署。本文介绍如何使用PAI Python SDK训练和部署PyTorch模型。

文章 2025-03-31 来自:开发者社区

9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体

生成对抗网络(GANs)的训练效果很大程度上取决于其损失函数的选择。本研究首先介绍经典GAN损失函数的理论基础,随后使用PyTorch实现包括原始GAN、最小二乘GAN(LS-GAN)、Wasserstein GAN(WGAN)及带梯度惩罚的WGAN(WGAN-GP)在内的多种损失函数。生成对抗网络(GANs)的工作原理堪比一场精妙的艺术创作过程——生成器(Generator)扮演创作者角色,不....

9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
阿里云文档 2024-06-06

如何快速使用C++程序来EAIS推理PyTorch模型?

您可以在ECS实例(非GPU实例)上绑定一个弹性加速计算实例EAIS(EAIS可以为ECS实例提供GPU资源),即可生成一款新规格的GPU实例。相比直接购买GPU实例,使用该方式可以为您灵活提供GPU资源并有效节省成本。如果您初次使用EAIS,可以通过本文内容体验在ECS实例上使用EAIS通过C++程序推理PyTorch模型并获得性能加速的完整使用流程,帮助您快速上手EAIS。

阿里云文档 2023-09-26

如何使用Python脚本通过EAIS(内置AIACC-Training 2.0加速库)训练PyTorch模型?_弹性加速计算实例(EAIS)

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例进行AI训练。本文为您介绍使用Python脚本通过EAIS实例(内置AIACC-Training 2.0加速库)训练PyTorch模型的具体操作。

阿里云文档 2023-09-26

如何使用EAIS训练PyTorch模型?

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例训练PyTorch模型。本文为您介绍使用EAIS训练PyTorch模型的具体操作。

阿里云文档 2023-08-30

如何通过C++程序来使用EAIS推理PyTorch模型?

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例进行AI推理。本文为您介绍使用C++程序通过EAIS推理PyTorch模型的具体操作。

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像