向量存储vs知识图谱:LLM记忆系统技术选型
LLM本质上是无状态的,如果你了解HTTP协议就很好理解这个概念,但是如果你没接触过这,那么可以理解成它们没有短期记忆能力,每次和LLM交互,都得把之前的对话重新喂给它。 短期记忆或者说状态管理其实很好处理,拿几组历史问答塞进prompt就行了。但是如果是长期记忆呢? 要让LLM准确提取历史信息、理解过往对话并建立信息关联,需要相当复杂的系统架构。 本文会从问题本身出发,看看构建高效记忆系统需要....
LLM 大模型学习必知必会系列(五):数据预处理(Tokenizer分词器)、模板(Template)设计以及LLM技术选型
LLM 大模型学习必知必会系列(五):数据预处理(Tokenizer分词器)、模板(Template)设计以及LLM技术选型 在模型训练过程中,数据及数据处理是最为重要的工作之一。在当前模型训练流程趋于成熟的情况下,数据集的好坏,是决定了该次训练能否成功的最关键因素。 在上一篇中,我们提到了模型训练的基本原理是将文字转换索引再转换为对应的向量,那么文字转为向量的具体过程是什么? 1.分词器...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。