Spark 源码分析 -- task实际执行过程
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(……) val textFile = sc.textFile("R.....
Spark 源码分析 -- Task
Task是介于DAGScheduler和TaskScheduler中间的接口 在DAGScheduler, 需要把DAG中的每个stage的每个partitions封装成task 最终把taskset提交给TaskScheduler /** * A task to execute on a worker node. */ private[spark] abst...
Spark源码分析之六:Task调度(二)
话说在《Spark源码分析之五:Task调度(一)》一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法。这个方法针对接收到的ReviveOffers事件进行处理。代码如下: // Make fake resource offers on all executors // 在...
Spark源码分析之五:Task调度(一)
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1、Job的调度模型与运行反馈; 2、Stage划分;  ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
apache spark您可能感兴趣
- apache spark依赖
- apache spark任务
- apache spark rdd
- apache spark ha
- apache spark master
- apache spark运行
- apache spark作业
- apache spark集群
- apache spark Mapreduce
- apache spark shuffle
- apache spark SQL
- apache spark streaming
- apache spark数据
- apache spark Apache
- apache spark Hadoop
- apache spark大数据
- apache spark MaxCompute
- apache spark summit
- apache spark模式
- apache spark分析
- apache spark flink
- apache spark学习
- apache spark Scala
- apache spark机器学习
- apache spark实战
- apache spark操作
- apache spark技术
- apache spark yarn
- apache spark程序
- apache spark报错
Apache Spark 中国技术社区
阿里巴巴开源大数据技术团队成立 Apache Spark 中国技术社区,定期推送精彩案例,问答区数个 Spark 技术同学每日在线答疑,只为营造 Spark 技术交流氛围,欢迎加入!
+关注