《中国人工智能学会通讯》——8.6 鸽群优化在图像处理中的应用
8.6 鸽群优化在图像处理中的应用 Duan et al [9] 将鸽群优化用于回声状态神经网络的参数优化,并将该改进后的递归神经网络算法用于图像复原,该图像复原算法可用于模糊图像复原和噪声图像复原。回声状态神经网络是一种递归神经网络,参数选择对该神经网络的性能有很大影响。首先使用正交设计策略初始化...
《中国人工智能学会通讯》——8.5 鸽群优化在控制参数优化中的应用
8.5 鸽群优化在控制参数优化中的应用 经典 PID 控制方法在面对非线性和模型不确定性等因素时,难以满足控制性能的要求,同时控制器参数的选取会对被控对象的响应精度产生较大的影响。Dou et al [15] 将模型预测控制算法应用到了舰载机的控制器设计中,并通过使用鸽群优化对模型预测控制其参数进行...
《中国人工智能学会通讯》——8.4 鸽群优化在编队中的应用
8.4 鸽群优化在编队中的应用 多无人机紧密编队控制具有极强的耦合性和非线性,由于模型输入存在强耦合 , 并且性能指标与模型参数并不存在直接的映射关系 , 因此紧密编队模型控制输入的选取是一个关键技术难题。段海滨等人[13]提出了一种基于捕食逃逸鸽群优化的无人机紧密编队协同控制方法: 基于人工势场法...
更新时间 2022-11-07 16:53:33
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。